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Abstract

The behaviour of nanofluids is investigated numerically inside a two-sided lid-driven differentially heated square cavity to gain insight
into convective recirculation and flow processes induced by a nanofluid. A model is developed to analyze the behaviour of nanofluids
taking into account the solid volume fraction v. The transport equations are solved numerically with finite volume approach using SIM-
PLE algorithm. Comparisons with previously published work on the basis of special cases are performed and found to be in excellent
agreement. The left and the right moving walls are maintained at different constant temperatures while the upper and the bottom walls
are thermally insulated. Three case were considered depending on the direction of the moving walls. Governing parameters were
0.01 < Ri < 100 but due to space constraints only the results for 0.1 < Ri < 10 are presented. It is found that both the Richardson number
and the direction of the moving walls affect the fluid flow and heat transfer in the cavity. Copper–Water nanofluid is used with Pr = 6.2
and solid volume fraction v is varied as 0.0%, 8%, 16% and 20%. Detailed results are presented for flow pattern and heat transfer curves.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Low thermal conductivity of conventional heat transfer
fluids such as water, oil, and ethylene glycol mixture is a
primary limitation in enhancing the performance and the
compactness of many engineering electronic devices. To
overcome this drawback, there is a strong motivation to
develop advanced heat transfer fluids with substantially
higher conductivities to enhance thermal characteristics.
As such an innovative way in improving thermal conduc-
tivities of a fluid is to suspend metallic nanoparticles within
it. The resulting mixture referred to as a nanofluid pos-
sesses a substantially larger thermal conductivity compared
to that of the traditional fluids [1]. The presence of the
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nanoparticles in the fluids increases appreciably the effec-
tive thermal conductivity of the fluid and consequently
enhances the heat transfer characteristics.

The natural convection problem in a differentially
heated square cavity is numerically simulated by Khanafer
et al. [2] considering the dispersion effect. In their method-
ology, the dispersion constant ‘‘C” is to be determined by
experimental data observation. Amiri and Vafai [3] dis-
cussed this model and used it for porous media. Khaled
and Vafai [4] investigated the effect of controlled dispersion
in a channel. The maximum Nusselt number for analyzed
distributions of the dispersive elements are found to be
21% higher than that with uniformly distributed dispersive
elements for a uniform flow. The volume fraction distribu-
tion that maximizes the heat transfer is governed by the
flow and thermal conditions as well as the properties of dis-
persive elements. Using different correlations analytically,
Chein and Huang [5] have analyzed microchannel heat sink
for Nusselt number and pressure drop based on Reynolds
number and pumping power. Koo and Kleinstreuer [6]
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Nomenclature

i x-direction grid point
j y-direction grid point
kf thermal conductivity of the fluid, W/m K
ks thermal conductivity of the solid, W/m K
Nu local Nusselt number
Nu average Nusselt number
n time level
Pr Prandtl number,

mf

af

Re Reynolds number for the fluid
t* dimensional time, s
t non-dimensional time
u*, v* dimensional velocity components along (x*,y*)

axes, m/s
u, v dimensionless velocity components along (x,y)

axes
Vp velocity of the moving lid, m/s

x*, y* dimensional Cartesian co-ordinates, m
x, y dimensionless Cartesian co-ordinates

Greek symbols

a thermal diffusivity, m2/s
bf fluid thermal expansion coefficient

bs solid expansion coefficient
e convergence criterion
j excess thermal-conductivity enhancement coeffi-

cient
m kinematic viscosity, m2/s
v solid volume fraction

Subscripts

c cold wall
eff effective
f fluid
h hot wall
nf nanofluid
0 reference value
s solid

Superscript
* dimensional term
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have used Brownian motion based-thermal conductivity
and viscosity to numerically simulate the microheat sink.
Additionally they considered the viscous dissipation term.
They suggested that a high-Prandtl number base fluid
and a high aspect ratio channel should be used for better
heat transfer performance. Roy et al. [7] has considered
the case of radial flow cooling system for numerical simu-
lation. For physical properties calculation they obtained
a correlations by curve fitting on the experimental data
and found that nanofluids increased the wall shear stress
in a considerable way. Maiga et al. [8] have numerically
simulated nanofluid behaviour in a uniformly heated tube
for laminar as well as turbulent flow using approximated
correlations for experimental data. They found that for tur-
bulent flow regime, the heat transfer enhancement due to
nanoparticles becomes more important with the increase
of the Reynolds number. In another study, Maiga et al.
[9] numerically simulated nanofluids in forced convection
flows and solved the problems of uniformly heated tube
and a system of parallel, coaxial and heated disks. They
found that both the through flow Reynolds number and
the gap between disks have insignificant effect on the heat
transfer enhancement of nanofluids.

Fluid flow and heat transfer in a rectangular or a square
cavity driven by buoyancy and shear have been studied
extensively in the literature [10,11]. Mixed convection prob-
lem with lid-driven flows in enclosures are encountered in a
variety of engineering applications including cooling of
electronic devices, furnaces, lubrication technologies,
chemical processing equipment, drying technologies, etc.
Combination of buoyancy forces due to temperature gradi-
ent and forced convection due to shear results in a mixed
convection heat transfer, which is a complex phenomenon
due to the interaction of these forces.

To investigate the heat transfer enhancement by very
fine particles suspended in a fluid, two main approaches
have been adopted in the literature. The first one is the
two-phase model that takes into account the fluid and solid
phase role in the heat transfer process. The second one is
the single-phase model where both the fluid phase and
the solid particles are in thermal equilibrium state and flow
with the same local velocity. Several issues are involved
while studying the heat transfer enhancement utilizing
nanofluids. These issues are like gravity, Brownian motion,
layering at the interface between solid and liquid, clustering
of the nanoparticles, ballistic phono transport through the
particles and the friction between the fluid and the solid
particles. The phenomena of sedimentation, dispersion
and Brownian diffusion may coexist in the main flow of a
nanofluid. In the absence of any suitable theoretical studies
and experimental data in the literature to investigate these
issues, the existing macroscopic two-phase model is not
applicable for analyzing nanofluids [2,12]. If the main inter-
est is focused on the heat transfer process, the modified sin-
gle-phase, accounting for some of the above factors, is
more convenient than the two-phase model. Also, the supe-
rior characteristics of the nanofluid allow it to behave more
like a fluid rather than the conventional solid–fluid
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mixtures. Modeling the effective thermal conductivity poses
a challenge while studying the heat transfer enhancement
using nanofluids. Maxwell’s model [13] predicted that the
effective thermal conductivity of suspensions containing
spherical particles increases with an increase in the volume
fraction of the solid particles. Hamilton and Crosser [14]
developed an expression for the effective thermal conduc-
tivity of two-component mixtures taking into consideration
the liquid and solid particle thermal conductivities, particle
volume fraction and an empirical scaling factor to account
for the different shapes of the particles.

Although prospects of nanofluids is very promising,
there is still a dearth of enough research. To the best
knowledge of the authors, the problem of heat transfer
enhancement in a two-sided lid-driven differentially heated
square cavity filled with nanofluids has not been analyzed.
This problem may be encountered in a number of elec-
tronic cooling and MEMS applications. The present study
is focussed on the analysis of several pertinent parameters
on the heat transfer characteristics of nanofluids within
the enclosure. In the present study, a time marching incom-
pressible flow solver has been applied for simulating the
flow features of nanofluids for a range of solid volume frac-
tion (v) values and Richardson number (Ri).

2. Mathematical formulation

Consider a two-sided lid-driven square cavity filled with
a nanofluid. The vertical lids have different constant tem-
peratures. The horizontal walls are assumed to be insu-
lated, non-conducting, and impermeable to mass transfer.
Three different cases were considered as shown in Fig. 1.
In case I, the left wall (cold) is moving up while right wall
(hot) is moving down. In case II, the left wall is moving
down while the right wall is moving upwards, and in case
III both the walls are moving upwards. In all the three
cases, the moving walls have the same speed and gravita-
tional force direction is parallel to the moving walls. The
nanofluid in the enclosure is Newtonian, incompressible,
Th

Vpy

x

Vp adiabatic

adiabatic

Tc g

a b

x

adiab

adia

Tc

Vp

y

Fig. 1. Physical model for three cases and the co-ord
and laminar. The nanoparticles are assumed to have a uni-
form shape and size. Moreover, it is assumed that both the
fluid phase and nanoparticles are in thermal equilibrium
state and they flow at the same velocity. The thermophys-
ical properties of the nanofluid are assumed to be constant
except for the density variation in the buoyancy force,
which is based on the Boussinesq approximation.

We have considered the continuity, momentum and
energy equations for a Newtonian, Fourier constant prop-
erty fluid governing an unsteady, two-dimensional flow. It
is further assumed that radiation heat transfer among sides
is negligible with respect to other modes of heat transfer.
Under the assumption of constant thermal properties, the
Navier–Stokes equation for an unsteady, incompressible,
two-dimensional flow are
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The viscosity of the nanofluid can be estimated with the
existing relations for the two-phase mixture. The equation
given by Brinkman [15] has been used as the relation for
effective viscosity in this problem, as given by

leff ¼
lf

ð1� vÞ2:5
ð5Þ

Xuan and Li [16] have experimentally measured the appar-
ent viscosity of the transformer oil–water nanofluid and of
the water–copper nanofluid in the temperature range of 20–
50 �C. The experimental results reveal relatively good
agreement with Brinkman’s theory.

The effective density of the nanofluid at reference tem-
perature is

qnf ;0 ¼ ð1� vÞqf ;0 þ vqs;0 ð6Þ

and the heat capacitance of nanofluid is

ðqCpÞnf ¼ ð1� vÞðqCpÞf þ vðqCpÞs ð7Þ

as given by Xuan and Li [17]. The effective thermal conduc-
tivity of fluid can be determined by Maxwell–Garnett’s
(MG model) self-consistent approximation model. For
the two-component entity of spherical-particle suspension,
the MG model gives

keff

kf

¼ ðks þ 2kfÞ � 2vðkf � ksÞ
ðks þ 2kfÞ þ vðkf � ksÞ

ð8Þ

In the absence of any convenient formula, the calcula-
tion of effective thermal conductivity can be obtained from
the above equation. For further analysis, it is convenient to
introduce the excess thermal-conductivity enhancement
coefficient j, defined as

j ¼ keff � kf

kHC � kf

ð9Þ

In the above definition, j is simply the ratio of measured
thermal conductivity increase divided by the increase pre-
dicted by the Hamilton–Crosser (HC) theory. Conse-
quently, j = 1 indicates agreement with the macroscopic
theory, and j > 1 measures the magnitude of thermal-
conductivity enhancement. The above equations can be
converted to non-dimensional form, using the following
dimensionless parameters:

x ¼ x�

H
; y ¼ y�

H
; u ¼ u�

V p

; v ¼ v�

V p

;

p ¼ p�

ðqV 2
pÞ
; T ¼ T � � T �c

DT �
;

Gr ¼ gbH 3DT �

m2
f

; Re ¼ V pH
mf

; Pr ¼ mf

af

The governing equations can now be written in dimension-
less form as follows:

Continuity equation:
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y-momentum equation:
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Boundary conditions are isothermal on the vertical
moving lids and adiabatic on the horizontal walls. On the
horizontal walls, u and v velocities are zero and the lids
have a constant velocity. The relevant boundary conditions
are given as follows:

u ¼ 0; v ¼ 1 or ðv ¼ �1Þ for x ¼ 0 and 0 6 y 6 1

u ¼ 0; v ¼ 1 or ðv ¼ �1Þ and T ¼ 1:0

for x ¼ 1 and 0 6 y 6 1

u ¼ v ¼ 0 and
oT
oy
¼ 0 for y ¼ 0 and 0 6 x 6 1

u ¼ v ¼ 0 and
oT
oy
¼ 0 for y ¼ 1 and 0 6 x 6 1

ð14Þ

The Nusselt number of the nanofluids is expected to
depend on a number of factors such as thermal conductiv-
ity and heat capacitance of both the pure fluid and the
ultrafine particles, the volume fraction of the suspended
particles, the flow structure and the viscosity of the nano-
fluid. The local variation of the Nusselt number of the
nanofluid can be expressed as

Nu ¼ Q
Qcond;fluid

¼ �
ðkeffÞstagnant

kf

oT
oX

ð15Þ

where

Q ¼ �ðkeffÞstagnantA
oT �

ox�
jx�¼0 ð16Þ

The average Nusselt number along the left wall is calcu-
lated by integrating the local Nusselt number over the left
wall

Nu ¼
Z 1

0

Nudy ð17Þ
3. Numerical procedure

The governing equations are discretized with a collo-
cated grid arrangement of the variables following the Rhie
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and Chow scheme [18]. The governing equations are solved
numerically by finite volume method. The semi-implicit
method for pressure linked equation (SIMPLE) [19] is used
to couple momentum and continuity equations. The third
order accurate deferred QUICK scheme of Hayase et al.
[20] is employed to minimize the numerical diffusion for
the convective terms for both the momentum equations
and the energy equation. The solution of the discretized
momentum and pressure correction equation is obtained
by TDMA line-by-line method [19]. The iterative proce-
dure is initiated by the solution of energy equation fol-
lowed by momentum equations and is continued until
convergence is achieved. Euclidean norm of the residual
is taken as convergence criteria for each dependent variable
in the entire flow field [21]. The mass balance for conver-
gence was taken as 10�4. At each time step, the solution
is converged and is used in the next time step as initial con-
ditions. Unconditionally stable fully implicit scheme is used
to move from nth time step to (n + 1)th time step. The glo-
bal convergence criteria is taken as 10�4.

Different values of under relaxation for pressure correc-
tion equation and dt are used so that a logical and con-
verged solution can be achieved. At steady state, the
error reaches the asymptotic behaviour. Here it is set as
sum of temperature error reduced to the steady-state crite-
ria e

Ximax;jmax

i;j¼1

ðT nþ1
i;j � T n

i;jÞ < e ð18Þ
4. Validation of the code

To validate the developed code, a two-dimensional lid-
driven square-cavity flow problem [22] has been solved
and compared. Then the present code is validated for nat-
ural convection heat transfer by comparing the results of a
buoyancy driven laminar heat transfer in a square cavity
with differentially heated side walls. The left wall was kept
hot while the right wall was cooled. The top and bottom
walls are insulated. In the present work numerical predic-
tions, using the developed algorithm, have been obtained
for Rayleigh numbers between 103 and 106. Table 1 com-
pares the results with those by de Vahl Davis [23], Marka-
tos and Perikleous [24], and Hadjisophocleous et al. [25],
Fusegi et al. [26] and Ha and Jung [27]. The computed
results are in very good agreement with the benchmark
solution.

Iwatsu et al. [10] have solved a mixed convection prob-
lem in a square cavity. The top wall is moving with a veloc-
ity and maintained at hot condition. The bottom wall is
cooled whereas the two vertical walls are under adiabatic
condition. The comparison of the results obtained from
the present code with those of Iwatsu et al. [10] is shown
in Table 2.

There is not much numerical data available in the liter-
ature for heat transfer within square cavities using nano-
fluids. The natural convection problem in a differentially
heated square enclosure using nanofluids has been solved
and compared the results with those of Santra and Sen
[28] (Fig. 2). A very good agreement has been obtained.
Khanafer et al. [2] have also solved the same problem with
dispersion model. However, the value of constant ‘‘C” is
not given. So the dispersion model has not been used in
the present case though the results have shown almost same
pattern (not shown here).

5. Grid independence study

The grid independence test is performed using succes-
sively sized grids, 21 � 21, 41 � 41, 61 � 61 and 81 � 81
for Case I, Ri = 0.1 and v = 20%. Uniform grid has been
used for all the computations. The distribution of the
u-velocity in the vertical mid-plane and temperature in
the horizontal mid-plane are shown in Fig. 3. It is observed
that the curves overlap with each other for 61 � 61 and
81 � 81. So a grid number of 61 � 61 is chosen for further
computation. Similar type of grid independence study has
been carried out for other cases and not reported here.

6. Results and discussion

Mixed convection flow and temperature fields in a two-
sided lid-driven square cavity filled with nanofluid are
examined. The numerical code developed in the present
investigation is used to carry out a number of simulations
for a wide range of the controlling parameters of Ri and
v. The range of Ri for this investigation is varied between
0.1 < Ri < 10. To vary Ri, Grashof number is fixed at
Gr = 104 while changing Reynolds number through the
plate velocity Vp. The calculations are done with Reynolds
number identical at both sides of the cavity. The range of v
used in this study is varied between 0 < v < 20%. The ther-
mophysical properties of fluid and the solid phases are
shown in Table 3. Two-sided lid-driven cavity is analyzed
according to the direction of moving plate in three cases
as shown in Fig. 1. The results for each will be presented
next.

Case I: The left wall is moving lid is moving upwards
while the right wall moves downwards. It is noted that
forces due to the moving lids and the buoyancy act in the
opposite directions. The streamlines (on the left) and the
isotherms (on the right) for Ri = 0.1, 1 and 10 are shown
in Figs. 4–6 respectively. For Ri = 0.1, Fig. 4 shows that
the forced convection plays a dominant role and the recir-
culation flow is mostly generated only by the moving lids.
As can be seen from Fig. 4(a), (c), (e), and (g), the recircu-
lation is clockwise and some perturbations are seen in
streamlines in the upper right and lower left corners which
is a characteristics of a lid-driven cavity flow problem. It is
observed that a strong convection exists in all the cases
(Fig. 4(b), (d), (f), and (h)). The strength of the convection
increases with v leading to the thinning of the boundary
layers on the vertical walls.



Table 1
Comparison of solutions for natural convection in an enclosed cavity

aa bb cc d d ee f f a� d
a
� 100

(a) Ra = 103

umax 3.649 3.544 3.544 3.642 0.1918
y 0.813 0.832 0.814 0.804
vmax 3.697 3.593 3.586 3.7026 �0.1514
x 0.718 0.168 0.186 0.1780
Nu 1.118 1.108 1.141 1.0871 1.085 1.072 2.76
Numax 1.505 1.496 1.540 1.508681 0.2750
y 0.092 0.0825 0.142 0.09322
Numin 0.692 0.720 0.727 0.6901 0.2745
y 1.0 0.9925 0.991 1.0

(b) Ra = 104

umax 16.178 16.18 15.995 16.1439 0.2107
y 0.823 0.832 0.814 0.822
vmax 19.617 19.44 18.894 19.6650 �0.244
x 0.119 0.113 0.103 0.110
Nu 2.243 2.201 2.29 2.195 2.100 2.070 2.13
Numax 3.528 3.482 3.84 3.5585 �0.8645
y 0.143 0.1425 0.141 0.1440
Numin 0.586 0.643 0.670 0.5809 0.8703
y 1.0 0.9925 0.991 1.0

(c) Ra = 105

umax 34.73 35.73 37.144 34.30019 1.237
y 0.855 0.857 0.855 0.856
vmax 68.59 169.08 68.91 68.7646 �0.254
x 0.066 0.067 0.061 0.05935
Nu 4.519 4.430 4.964 4.450 4.361 4.464 1.52
Numax 7.117 7.626 8.93 7.9371 �11.523
y 0.081 0.0825 0.080 0.0762
Numin 0.729 0.824 1.01 0.71730 1.6049
y 1.0 0.9925 1.0 1.0

(d) Ra = 106

umax 64.63 68.81 66.42 65.5866 �1.9124
y 0.850 0.872 0.897 0.839
vmax 217.36 221.8 226.4 219.7361 �1.0931
x 0.0379 0.0375 0.0206 0.04237
Nu 8.799 8.754 10.39 8.803 �0.00045
Numax 17.925 17.872 21.41 19.2675 �7.4755
y 0.0378 0.0375 0.030 0.02542
Numin 0.989 1.232 1.58 0.9420 4.7522
y 1.0 0.9925 1.0 1.0

a de Vahl Davis [23].
b Markatos and Perikleous [24].
c Hadjisophocleous et al. [25].
d Present solution.
e Fusegi et al. [26].
f Ha and Jung [27].

Table 2
Comparison of the present data with those of Iwatsu et al. (in bracket) [10]

Re Gr = 102 Gr = 104 Gr = 106

100 2.10 (1.94) 1.47 (1.34) 1.04 (1.02)
400 3.85 (3.84) 3.61 (3.62) 1.23 (1.22)

1000 6.33 (6.33) 6.28 (6.29) 1.77 (1.77)
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For Ri = 1 (Fig. 5), the natural convection effect is com-
parable with the forced convection effect. As a result, two
weaker cells are formed at the sides in addition to the main
cell (moving at anticlockwise direction). Here the impor-
tant phenomenon happening is that with the increased con-
centration inside the fluid, nanofluid helps in minimizing
the natural convection effect and precipitate in merging
all cells into one for v > 0.08 (Fig. 5(e)). There is a remark-
able chenage in the isotherm pattern from v = 0 and 0.08
(Fig. 5(b) and (d)) to v = 0.16 (Fig. 5(f)) and v = 0.20
(Fig. 5(h)) with the formation of a boundary layer on the
vertical walls with accompanying increase in heat transfer.
When Ri = 10, the effect of natural convection is far more
compared to the forced convection effect (Fig. 6). For this
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Table 3
Thermophysical properties of different phases

Property Fluid phase (water) Solid phase (copper)

cp (J/kg K) 4179 383
q (kg/m3) 997.1 8954
k (W/m K) 0.6 400
b (K�1) 2.1 � 10�4 1.67 � 10�5
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case, conditions are strongly favouring the phenomena of
natural convection and the effect of nanoparticles is not
that much. Thus the streamlines (Fig. 6(a), (c), (e), and
(g)) and the isotherms (Fig. 6(b), (d), (f), and (h)) show a
similar trend for the range of v = 0–0.20.

From the mid-plane velocity curves Fig. 13(a) and (c), it
can be seen that the solid volume fraction does not have
much effect except at Ri = 1. This case (Fig. 13(b)) is con-
siderably dependent on the amount of nanoparticles as
v > 0.08, the flow pattern switches from natural convection
domination to forced convection domination.

The local Nusselt number (Nu) profile at the left wall has
been plotted in Fig. 16. For Ri = 0.1, the pattern is similar
for all the values of v. It increases with the increase of v.
For Ri = 1, Fig. 16(c) shows that Nu has a sudden increase
u
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Fig. 3. Grid independence test for case I, Ri = 0.1 and v = 20%: (a) u-velocity d
horizontal mid-plane.
for higher values of v due to the switching of the flow pat-
tern. For Ri = 10, Fig. 16(c) shows a pattern similar to
Ri = 0.1.

Case II: In this case, the left wall is moving downwards
while the right wall is moving upwards, which represents
the case of aiding shear and buoyancy forces. Figs. 7–9
show the streamlines (on the left) and isotherms (on the
right) for Ri = 0.1, 1.0 and 10. As can be seen in Fig. 7,
the central vortex is moving anticlockwise direction. The
case of Ri = 0.1 is of forced convection with smaller buoy-
ancy force where the fluid motion is mainly dictated by the
moving boundaries. The formation of the thermal bound-
ary layer on the two vertical walls can be noticed. For
Ri = 1 (Fig. 8), the central core consists of two small vor-
tices when v = 0, i.e., for base fluid (Fig. 8(a)). However,
as v increases, the heat transfer increases as the thermal
boundary layers are getting thinner. These vortices coalesce
into one single core at the center (Fig. 8(c), (e), and (g)).
The formation of the thermal boundary layers for all the
v’s is to be noticed here. At Ri = 10 (Fig. 9(a), (c), (e),
and (g)), the flow is characterized by the large central main
eddy breaking into two small eddies at the core. Unlike for
Ri = 1.0, they cannot coalesce into one even with increased
v because of the increased natural convection strength. The
thermal boundary layer spreads out more in the flow direc-
tion (Fig. 9(b), (d), (f), (h)). For Ri = 0.1 and 10, velocity
at mid plane is decreasing with increasing solid volume
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Fig. 5. Streamlines and isotherms for Case I and Ri = 1: (a) v = 0%; (b)
v = 0%; (c) v = 8%; (d) v = 8%; (e) v = 16%; (f) v = 16%; (g) v = 20%; (h)
v = 20%.

Fig. 4. Streamlines (a, c, e, g) and isotherms (b, d, f, h) for Case I and
Ri = 0.1: (a) v = 0%; (b) v = 0%; (c) v = 8%; (d) v = 8%; (e) v = 16%; (f)
v = 16%; (g) v = 20%; (h) v = 20%.
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fraction while opposite happens for Ri = 1 (Fig. 14). In
Fig. 17, the Nusselt number profile at the left wall is plot-
ted. For all the values of Ri, the pattern is almost similar.
With increasing v, the Nusselt number is increasing.

Case III: This is the case where both the vertical walls
move upward in which the buoyancy and shear forces are
aiding each other on the right wall and opposite situation
happens on the left wall. Therefore it is expected that the
main circulation will be on the right side of the cavity.
Streamlines and isotherms for Ri = 0.1, 1.0 and 10 are pre-
sented in Figs. 10–12 respectively. For Ri = 0.1, it is seen
that there is a large counter-clockwise circulating eddy at
the right hand side and a small clockwise circulating eddy
at the left side (Fig. 10(a), (c), (e), (g)). This behaviour is



Fig. 6. Streamlines and isotherms for Case I and Ri = 10: (a) v = 0%; (b)
v = 0%; (c) v = 8%; (d) v = 8%; (e) v = 16%; (f) v = 16%; (g) v = 20%; (h)
v = 20%.

Fig. 7. Streamlines and isotherms for Case II and Ri = 0.1: (a) v = 0%; (b)
v = 0%; (c) v = 8%; (d) v = 8%; (e) v = 16%; (f) v = 16%; (g) v = 20%; (h)
v = 20%.
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very logical because the forced convection is dominant and
the buoyancy force is negligible. The eddy on the right side
is dominant because of the aiding buoyancy and shear
forces. Isotherms for this case (Fig. 10(b), (d), (f), (h)) form
a steeper thermal gradients between the two counter-circu-
lating eddies and no temperature gradient penetration is
discernable around them. For Ri = 1 (Fig. 11), the aiding
buoyancy driven force on the right wall affects the flow
and temperature fields while that on the left is almost nul-
lified by the opposing shear forces. As a result, the cell on
the right fills the cavity more than the one on the left. For
Ri = 10 (Fig. 12), which is a buoyancy dominated regime,
the counter clockwise circulating cell on the right grows
further due to the aiding forces on the hot wall while the
one on the left becomes weaker and smaller, i.e., the left cell



Fig. 8. Streamlines and isotherms for Case II and Ri = 1: (a) v = 0%;
(b) v = 0%; (c) v = 8%; (d) v = 8%; (e) v = 16%; (f) v = 16%; (g) v = 20%;
(h) v = 20%.

Fig. 9. Streamlines and isotherms for Case II and Ri = 10: (a) v = 0%;
(b) v = 0%; (c) v = 8%; (d) v = 8%; (e) v = 16%; (f) v = 16%; (g) v = 20%;
(h) v = 20%.
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nearly vanishes for the natural convection becomes more
dominant there. The effect of the right wall (moving
upward) in this case becomes negligibly small as if it were
not moving. The isotherms (Fig. 12(b), (d), (f), and (h))
are like those observed in natural convection in differen-
tially heated cavities and show steeper horizontal tempera-
ture gradients at the lower part of the right moving wall.
Due to the presence of the left cell, the temperature gradi-
ent is weakened at the center of the cavity and a stratifica-
tion is observed. From Fig. 15, it can be seen that with
increasing v, the mid plane velocity decreases.

The Nusselt number profile at the left wall is plotted in
Fig. 18. For Ri = 0.1 and 1 the pattern is similar, Nusselt



Fig. 11. Streamlines and isotherms for Case III and Ri = 1: (a) v = 0%;
(b) v = 0%; (c) v = 8%; (d) v = 8%; (e) v = 16%; (f) v = 16%; (g) v = 20%;
(h) v = 20%.

Fig. 10. Streamlines and isotherms for Case III and Ri = 0.1: (a) v = 0%;
(b) v = 0%; (c) v = 8%; (d) v = 8%; (e) v = 16%; (f) v = 16%; (g) v = 20%;
(h) v = 20%.
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number increases with v. For Ri = 10 (Fig. 11(c)), at the
top portion of wall, the Nusselt number is not varying that
much but at the lower portion it changes very fast. This is
well expected as can be seen in the respective isotherm plots
that at lower part of the wall the temperature gradient is
sharp.

Overall heat transfer: The average Nusselt number (Nu)
for three cases and different Richardson number are calcu-
lated using Eq. (17) and presented in Fig. 19. Fig. 19(a)
shows that with increasing v, the heat transfer capacity of
media also increases but for Ri = 1, Nu dramatically
changes when v is increased from 0.08 to 0.16. This is
because here nanoparticles are capable of changing the
flow feature.



Fig. 12. Streamlines and isotherms for Case III and Ri = 10: (a) v = 0%;
(b) v = 0%; (c) v = 8%; (d) v = 8%; (e) v = 16%; (f) v = 16%; (g) v = 20%;
(h) v = 20%.
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Fig. 13. Case I: mid-plane u-velocity: (a) Ri = 0.1; (b) Ri = 1; (c) Ri = 10.
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For case II, from Fig. 19(b) the Nusselt number is
clearly increasing with solid volume fraction for all the val-
ues of Richardson number. For Ri = 0.1 it is changing
from 30 to 70 which clearly demonstrates their superior
capability as heat transfer media. For case III, Fig. 19(b)
shows that increase in v increases the average Nusselt num-
ber. It should be noted that the trend in Fig. 19 for the aver-
age Nusselt number versus the volume fraction would be
downward if the Nusselt number is based on the effective
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Fig. 14. Case II: mid-plane u-velocity: (a) Ri = 0.1; (b) Ri = 1; (c) Ri = 10.
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Ri = 10.
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thermal conductivity, keff, instead of the fluid thermal con-
ductivity, kf.

The variations of average Nusselt number (Nu) with Ri

and v for the three cases are shown in Table 4. For Case
I (Table 4(a)), Ri = 1, there is a substantial increase in Nu
as v is increased above 8%. In general, Nu increases with
v. When v is 8%, the increase is approximately 30%. When
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Fig. 16. Case I: local Nusselt number at wall: (a) Ri = 0.1; (b) Ri = 1;
(c) Ri = 10.
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(c) Ri = 10.
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v is 16%, the increase is approximately 90%. When v is
20%, the increase is above 100%. For case II (Table
4(b)), as v is increased to 8%, an increase of 40% is
observed. A heat transfer augmentation of above 90% is
obtained for v = 0.16 compared to v = 0.0. This value
becomes more than 125% as v becomes 20%. For case III
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Fig. 19. Nusselt Number comparisons for the three cases: (a) Case I;
(b) Case II; (c) Case III.
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(Table 4(c)), Nu is more for Ri = 0.1 compared to
Ri = 10.0. As v is increased to 0.08, the increase is little
above 30%. An increment of 80% or more is observed when
v is increased to 0.16. For v = 0.2, an increase of 110% or
more is observed for the three Ri.



Table 4
Comparison of average Nusselt number ðNuÞ for three cases and various solid volume fractions

A (v = 0%) B (v = 8%) % Increasea D (v = 16%) % Increaseb F (v = 20%) % Increasec

(a) Case I

Ri = 0.1 30.68 43.16 40.70 58.86 91.88 68.43 123.06
Ri = 1 2.36 3.08 30.60 34.74 1373.16 41.31 1651.38
Ri = 10 1.38 1.85 33.55 2.63 89.81 3.14 126.5

(b) Case II

Ri = 0.1 30.67 42.78 39.50 59.40 93.69 69.03 125.09
Ri = 1 17.96 25.22 40.44 35.22 96.10 41.51 131.10
Ri = 10 10.19 14.45 41.80 20.19 98.10 23.79 133.35

(c) Case III

Ri = 0.1 11.54 16.81 45.65 23.44 103.15 27.50 138.30
Ri = 1 6.65 9.28 39.53 12.76 91.92 14.92 124.38
Ri = 10 4.25 5.70 33.93 7.62 79.16 9.03 112.29

a B� A
A
� 100.

b D� A
A
� 100.

c F � A
A
� 100.
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7. Conclusions

This study has been concerned with the numerical mod-
eling of mixed convection in two-sided lid-driven differen-
tially heated square cavity filled with nanofluid. It has
been performed for three different cases characterized by
the direction of movement of the vertical walls. The gov-
erning parameters are Ri and v.

In view of the results, following findings may be
summarized.

1. The nanoparticles when immersed in a fluid are capable
of increasing the heat transfer capacity of base fluid. As
solid volume fraction increases, the effect is more pro-
nounced. The variation of average Nusselt number is
nonlinear with solid volume fraction.

2. Nanoparticles are able to change the flow pattern of a
fluid from natural convection to forced convection
regime. For Case I, it is found that nanoparticles after
a certain limit can increase the Nusselt number drasti-
cally for Ri = 1.0.

3. When both the vertical walls move upwards in the same
direction (i.e. Case III), the heat transfer is reduced com-
pared to the other two cases (Cases I and II). This is
observed for Ri = 0.1, 1 and 10.0.

4. In the case of Ri < 1, which is the forced convection
dominated regime, when the vertical walls move in
opposite direction, cases I and II, the heat transfer is
considerably enhanced regardless of which side moves
upwards. For Ri = 1.0, Nu is high for Case II compared
to Cases I and III. For v = 0.16 and 0.20, Nu is smaller
for Cases I and II.

5. For Case I, Ri = 1, there is a substantial increase in Nu
as v is increased above 8%. In general, Nu increases with
v. When v is 0.08, the increase is approximately 30%.
When v is 0.16, the increase is approximately 90%.
When v is 0.2, the increase is above 100%.
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